OptiX 入门笔记

这其实是我大三上图形学大作业的报告,最近整理本科期间的项目,于是把报告里面比较关于 OptiX 的部分拿出来水篇博客做个笔记。 个人认为 API 没有什么讲的价值,所以博客里更多是讲讲关于 OptiX 的编程模型/思想。 另外有关光追基本知识的部分此处也不过多赘述。 1 基本架构 OptiX 的主要结构如上图所示,由光追渲染管线、加速结构、着色器表及相关资源构成。 值得注意的是,OptiX 其实只负责了渲染的部分,也就是说每次 OptiX 程序运行完成后返回的都是一帧渲染好的图像,而建模、交互,甚至包括画面的显示,都不是 OptiX 所负责的。你可以搭配 OpenGL 之类的来完成这些显示窗口的维护和交互工作。 1.1 光追渲染管线 光追渲染管线是整个光追的核心,它负责了光线的发射、相交的检测、每条光线的着色,以及这些全部计算的调度 1.2 加速结构 加速结构 (Acceleration Structure) 加速的其实是相交检测,OptiX 中使用加速结构来标记物体的每个面,然后计算的就是每条光线与加速结构的相交情况 加速结构本身是一个树形的结构,使用加速结构可以加速光线相交检测的遍历 在注册完全部的加速结构后,OptiX 会编译一个查询表,通过这个加速表可以实现非常高效的相交检测 但是需要注意的是,当建模发生变化的时候,加速结构就会发生变化,进而导致查询表的重新编译,所以在 OptiX 中,modeling 的变化会使得计算压力增大 1.3 着色器表 着色器表 (Shader Table) 中储存了各种与最后的着色有关的资源的索引,可以用于索引一次光线追踪中可能用到的所有资源,比如材质、纹理、法向等,通过着色器表,我们可以快速的获取到这些资源,然后完成相关的计算 每次渲染时,由光追渲染管线调度光线的发射,当光线发生相交后,加速结构给出发生相交处的物体的属性索引,然后我们在着色器表中按照索引查找相关的属性和资源,再交给着色器进行最后的着色,就得到了这个像素上这条光线渲染出来的结果。 2 光追可编程渲染管线 与光栅化一样,光追的渲染管线也是可编程的。光追的渲染管线在前面已经解释,其中可以编程的主要是光线发射、相交检测、着色三个部分。 2.1 光线发射 OptiX 可以实现比较复杂的光线发射,指向针对光源进行重要性采样,不过在我们这儿因为场景足够亮,所以没有做相关的定制。 2.2 相交检测 相交检测背后的算法是二叉树 BVH (Bounding Volume Hierachy),是空间切分技术之一。使用树形组织的加速结构,可以加速相交检测的计算。但是即便如此,依然是一个开销非常大的计算,在没有 RT Core 的传统 GPU 上,只能通过软件模拟的方法实现相关的计算。 而在 RTX GPU 上,这一算法有相关的硬件实现,因此可以得到非常高的运行效率。 在 OptiX 中直接提供的加速结构只有三角网格结构,不过三角网格的建模能力已经非常强了,所以暂时也没有新增其他结构的需求。...

August 1, 2021 · 1 min · 96 words · NCJ